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Effects of plane progressive irrotational waves 
on thermal boundary layers 
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The average changes in the structure of thermal boundary layers at the surface 
of bodies of water produced by various types of surface waves are computed. The 
waves are two-dimensional plane progressive irrotational waves of unchanging 
shape. They include deep-water linear waves, deep-water capillary waves of 
arbitrary amplitude, Stokes waves, and the deep-water gravity wave of maximum 
amplitude. 

The results indicate that capillary waves can decrease mean temperature 
gradients by factors of as much as 9.0, if the average heat flux at  the air-water 
interface is independent of the presence of the waves. Irrotational gravity waves 
can decrease the mean temperature gradients by factors no more than 1-381. 

Of possible pedagogical interest is the simplicity of the heat conduction 
equation for two-dimensional steady irrotational flows in an inviscid incom- 
pressible fluid if the velocity potential and the stream function are taken to be 
the independent variables. 

1. Introduction 
A strong thermal boundary layer is usually present at the top of the ocean (see 

Osborne (1964) for a complete discussion, including references to early experi- 
mental and observational evidence; see McAlister & McLeish (1969) for later 
references and discussion). Evaporation, radiation, and heat transport establish 
the boundary layer, which is approximately 1-2 mm thick and across which the 
temperature variation is of the order of 0.5 "C. Because the layer thickness and 
thermal conductivity of water have known values, the time scale for formation 
of a layer is known to be of the order of 10 sec. 

Osborne (1965) and O'Brien (1967) have shown that surface waves can 
significantly alter the boundary-layer structure. Osborne treated linear waves, 
and O'Brien treated Gerstner waves, which are not irrotational. Both types 
of wave are only an imperfect representation of real ocean waves, which are 
frequently large-amplitude waves, and are nearly irrotational. In  fact, any 
vorticity generated by wind stresses is oppositely directed from that of a Gerstner 
wave travelling down-wind (see Lamb (1932, pp. 421-3) for an exposition of the 
Gerstner wave). In  addition, recent experimental evidence (Hill 1970) indicates 
that capillary waves may alter the thermal boundary layer much more than 
is possible for the waves considered by Osborne and O'Brien. 
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In  this paper we consider the effects on thermal boundary layers produced by 
irrotational waves and include waves of finite amplitude. In  $ 2  the equation is 
derived which governs heat conduction within steady irrotational flows in 
incompressible inviscid fluids, assuming that thermal effects such as buoyancy 
do not alter the flow field. The independent variables in the flow description are 
the natural pair for plane progressive waves of unchanging shape: the velocity 
potential + and the stream function *, The heat conduction equation in +, $ 
co-ordinates is so elementary for steady boundary layers that explicit solutions 
are easily obtained. Two relevant boundary conditions are discussed in $2.2. Then 
the lowest-order effects of four kinds of progressive waves on thermal boundary 
layers are calculated: linearized sinusoidal waves in deep water in $3;  deep- 
water capillary waves of arbitrary amplitude (Crapper 1957) in $4; Stokes waves 
(Stokes 1847, 1880) and deep-water gravity waves of maximum amplitude 
(Michelll893 or Havelock 1918) in $6 5 and 6 ,  respectively. Some conclusions are 
set forth in $7. 

2. Basic formalism 
2.1. T h e  heat conduction equation 

For two-dimensional problems the equation governing heat conduction in a 
fluid is 

where T denotes the temperature, t the time, K the thermal diffusivity 

n l d t  = K(a2T/ax2 + a v l a g ) ,  (2.1) 

(K = 1.4 x 10-3cm2/sec for water a t  room temperature), 

and x and y the horizontal and vertical co-ordinates respectively. In two dimen- 
sions the convective derivative is defined as 

a p t  = alat + u alaz + v alay, (2.2) 

where u denotes the horizontal velocity and v the vertical velocity. 
Because the fluid is taken to be inviscid and the flow irrotational, the velocity 

may be written as the gradient of a potential function +, and can be related to a 
stream function $: 

u = a#lax = a+r/ay; 

v = a+lay = -a*/ax. 
(2.3) 

(2.4) 

Following Stokes (1880) we choose to regard # and @ as the independent 
variables in the heat conduction problem. Then the convective derivative 

a a a + a  a + a  
dt at at a+ at a* 

becomes 
-=-+--+-- 

a a 
= - +(u2+v2)-  

at a+. 
Equation (2.6) is valid only for steady flows, where + and + are not explicit 
functions of the time. It can, of course, be derived directly from (2.2) using the 
Cauchy-Riemann conditions equations (2.3)-(2.4). 
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We may also transform the Laplacian in (2.1) directly into 4, $ co-ordinates. 
However, we choose to start with the following definitions of the two-dimensional 
Laplacians: 

V$,$ T = lim 

where unprimed characters refer to x, y space, and primed characters refer to 
+, $ space. The path of integration in each line integral encloses an area 6A or 
6A'. If the domains of integration are a mapping between x, y and q5, $, then the 
integrals are identical because such a mapping is conformal. Thus, 

Upon substitution of (2.9) and (2.6) into (2.1), the heat conduction equation 
takes the remarkably simple form 

(2.10) 

Equation (2.10) is in an excellent form for numerical calculation even for quite 
complicated velocity fields, and has the useful property that wavy domains in 
x, y appear as rectangular domains in q5, 3. If the temperature field is steady, 
further simplification is possible, for then the heat conduction equation is linear, 
and the velocity field is absent. 

(2.11) 

Equation (2.1 1) has been derived by a different method by Boussinesq (1 905) 
but equation (2.10) represents an original contribution. Its application is appro- 
priate to those problems which have steady velocity fields but unsteady tem- 
perature fields; this application may be rare. The problems solved in this paper 
involve both steady temperature fields and sufficiently simple thermal boundary 
conditions that (2.1 1) applies. As an interesting example of a modern calculation 
exploiting (2.11) see Grosh & Cess (1958). 

2.2. Boundary conditions and basic solutions 

The velocity fields to be considered represent waves and are periodic in $, the 
period being A+ = hc ( A  = 2n/k is the wavelength, and c is the phase speed of the 
wave). Thermal boundary conditions are also taken as periodic in q5. This choice 
of boundary condition will permit solutions to (2.1 1 )  which possess no horizontal 
temperature gradients on any scale other than a wavelength. Then a general 
solution to (2.11) is 

(2.12) 

21-2 
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Because (2.11) governs (2.1 2), the TP s, satisfy 

a*T$)/a$2 = 0 ( j  = 0), (2.13) 

} ( j  Ji O),  (2.14) 

where aj = j k / c .  The problem of obtaining T = T($,  $) is well-posed if any of the 
classic boundary conditions for elliptic equations is specified. Here we choose 
to consider that the water temperature is constant along a streamline at  the 
bottom of the thermal boundary layer, i.e. 

- a:. T!C) = - a; K T ~ )  + azTy)lap 3 3  

+ aj Tp) = - aj"/&'"J'?) + K @T(e) a 2 d1c. 

T = T, = constant ($ = fro). (2.15) 

At the upper boundary, to be thought of as the streamline marking the air-water 
interface, we assume either Neumann conditions (I) or Dirichlet conditions 

(1) aTP@ = N ( Q )  (@ = O),  (2.16) (11), i.e. 

or (11) T = D($) ($ = 0). (2.17) 

The Neumann conditions are the more natural for the air-sea interface, at  least 
in near-neutral conditions, because the dominant processes establishing the 
thermal boundary layer are evaporation and radiation, both of which involve 
relatively-constant heat fluxes whether waves are present or not. Dirichlet 
conditions are included for comparison with O'Brien's Gerstner-wave results. 

Let Q($)  = heat flux out of the water, and now define y as positive downward 
and $ as positive in the direction away from the free surface. Then 

(2.18) 

where n denotes the inward normal co-ordinate. Of particular interest is the 
average heat flux 

(2.20) 

Thus the average heat flux depends only upon T$), and not upon any fluctuating 
component of the temperature field. This contrasts with results which have been 
obtained for rotational flow waves, where the average temperature field T,(")($) 
is coupled to the fluctuating components (Omholt 1970). Hence, solutions of 
(2.14) are not necessary in relating Q to T$), and in this paper emphasis will be 
placed only on the solution to (2.13) for either boundary condition (I) or (11): 

T$) = T, + (T, - T,) $/$o E T, + AT$/$O, (2.21) 

where T, is the average surface temperature of the water. If Dirichlet conditions 
are imposed, then T, is specified. If Q is specified, then from (2.20), 

AT = Q$oA/~A$.  (2.22) 
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O’Brien (1967) poses a set of boundary conditions, which in the notation of this 
paper are that T be periodic in $, and that T$) ($ = 0) and T$) ($ = $o) be 
specified. No further boundary conditions are stated (although it would seem that, 
unless they are, the problem is not well-posed). In  any case, O’Brien’s zeroth- 
order problem is well-posed, and corresponds to the Dirichlet-boundary-condition 
version of the problem for T$); O’Brien’s results for the Gerstner wave can be 
compared with the results obtained here. 

Following O’Brien, we define an ‘equivalent slab ’ as the fluidwithin $o, $o + A$; 
0, $o reoriented into a rectangular slab of the same width Ax = A, and having the 
same thermal boundary conditions. If the heat flux through the surface is held 
constant, then the temperature difference AT = Tw - T, decreases as the wave 
amplitude increases. If AT is held constant, the average heat flux increases with 
increasing amplitude. A measure of these changes, called here the ‘wave 
effectiveness’, is given by 

= (2.23) 

The equivalent slab has a horizontal length A, and a vertical thickness A/A, 
A denoting the cross-sectional area of the slab, which is identical to that of the 
wavy layer. For the equivalent slab, 0 and AT are obviously related by 

1 equlv. slab *!I’ constant ( W w a v y  surface G constant 

w [ ( A T )  equiv. slab 

Using (2.22), 
K A T / ~ ( A / A )  = 1. 

W = AA$/A2$,. 

The area contained within $o, q50 + A$; 0, $o is 

(2.24) 

(2.25) 

(2.26) 

Thus (2.28) 

3. Sinusoidal waves in deep water 

surface tension is 
The wave field of linear waves in deep water acted upon by gravity and/or 

(3.1) 

where a denotes the amplitude of the wave; a wave crest lies at  $ = $Ac for + y 
directed downward. The wave-number k and the phase speed c are related by the 
dispersion relation. 

z = - (w/c) + a eikw/c, 

In  order to compute the wave effectiveness, one needs 
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By substituting this expression into (2.28) and evaluating the integrals 

(3.3) 

The argument of the exponential in (3.3) is usually tiny, because $o/c r 1-2 mm, 
the depth of the thermal boundary layer. Hence, k$o/c 4 1 for all but small- 
wavelength capillary waves. When k$o/c < 1, 

W = 1 + k2a2. 

In  (3.4) one may distinguish three contributions which waves make to 
( W -  1). First, in one wavelength, the length of free surface exceeds h by a 
factor 1 + $k2a2. Second, the area-preserving requirement implies a corre- 
sponding decrease of the mean layer thickness by the same factor, 1 + $k2a2. 
Third, the thickness of the layer varies by a factor 1 - ka sin (kq51c) from its mean 
thickness; this contributes a factor of 1 + $k2a2 to W because of the following. 
The fluid at $o is physically closer to the free surface at  a wave trough than the 
mean thickness by the factor (1 - h) and the fluid at a crest is further by the 
factor (1 + ka). For a given AT, the excess of heat transported at trough regions 
exceeds the deficit transported a t  a crest region by the factor 

(3.4) 

(( 1 - ka sin k$/c)-') = 1 + @'a2. 

4. Capillary waves of arbitrary amplitude 
Crapper ( 1957) has derived an exact solution for two-dimensional capillary 

waves in an incompressible inviscid irrotational fluid. His solution is in perfect 
form for (2.28). In  particular, his equation (56) becomes 

where A is an amplitude parameter. Defining a as fr the vertical distance between 
crest and trough (this differs from Crapper's a):  

A = (2/ka) [(1+ tk2n2)i- 11 (0 < ka < 2.29). (4.2) 
Crapper shows that waves exist up to alimiting amplitude of ka = 2.29, at which 
point the wave profiles are cuspated, and beyond which they presumably break. 

Equation (4.1) is of such a form that the integrations indicated in (2.28) can be 
executed analytically. The algebra is lengthy, and is placed in appendix A. The 
result is 2c 1+A2 2 1 + A2 e--2Wo/c 21 

w =  '+%[(=) -(l-AZe-Wo/C) 1' (4.3) 

In  the limit k$olc -+ 0, the case of infinitesimal boundary-layer thickness, 

16A2( 1 + A2) 
= 1 + k2a2 + 4k4a4+. . . . 

(1 - w = 1 +  (4.4) 

In figure 1 W is plotted as a function of amplitude for various values of 
2l~$~/c ,  using equations (4.2) and (4.3) or (4.4). The capillary wave of maximum 
amplitude corresponds to Ica = 2-29, where each curve terminates. The values of 
W for capillary waves can range all the way up to 9.0, which indicates that 
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capillary waves have the potential of being very effective in modifying the 
thermal boundary-layer structure. 

The capillary-wave theory of Crapper (1957) ignores gravity. Linear water 
waves with gravity are qualitatively capillary only when wavelengths are 
smaller than 1-7 cm, and so Crapper's theory can be presumed to be applicable 

9 -  / O'O 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 

Non-dimensiond amplitude ka 27rafh 

FIGURE 1. Wave effectiveness of capillary waves. When 2k$,,/c + 0 the thermal boundary 
layer is negligibly thin when compared to  the wavelength; when 2k$0/c -+ oc), the layer 
is infinitely larger than the wavelength. 

only for h < 1.7 cm and accurate only for h 2 1 cm. Thus the condition k@,,lc < 1 
is seldom a good approximation for thermal boundary layers having thicknesses 
N 1-2 mm. In figure 2 two fixed values of A/h,  the thickness of the equivalent 
slab, are assumed (1 mm and 2 mm). The wave effectiveness is plotted against 
wavelength for the capillary wave of limiting amplitude, in order to  show the 
range of capillary waves which are capable of providing large thermal effects. 
This range is not negligible. 

5. Stokes waves 
Stokes (1847) was the first to deduce the approximate structure of finite- 

amplitude gravity waves in deep water. The solution involves an expansion in 
powers of ka. Stokes (1880) recast the theory into a form which is followed here. 
The flow field is governed by 
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Certain signs in (5.1) differ from those written by Stokes, because his + y direction 
was upward, and his I++ was defined as + Jvds = -Judy. Stokes computes the first 
five values of A ,  in terms of a parameter b = A,; Wilton (1914) computes A, 
through AI2. The series probably converges only up to (ka )  E 5 (Wilton 1914). 

Because the wavelength of a pure gravity wave is always vastly greater than 
1-2 mm, the wave effectiveness is evaluated only in the limit of negligibly thin 
boundary layers, i.e. k$,,/c -+ 0. Then, (2.28) can be re-written 

(5.2) 

After much algebra, which is sketched in appendix B, and using only the first 
five A,: 

9 -  

8 -  

7 -  

B 
:: 6 -  

.2 5 

8 

8 4 -  

5 

- 
i;l 

3 3 -  

W = 1 + (ka)2 + 7 ( k a ) 4 + y ( k a ) 6  + O(ka)8 .  (5.3) 

Asymptote 

Thermal boundary- 
layer thickness=2 inm 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 
1.73 

Wavelength h (om) 

FIGURE 2. Wave effectiveness of capillary waves of maximum amplitude. The asymptote is 
the value of W for k@,,/c + 0. The wavelength 1.73 ern corresponds to the slowest linear 
gravity-capillary wave in deep water. 

Presumably, (5.3) converges for sufficiently small values of ka. It probably 
does not converge for values of ka  near breaking. The limiting value of the ratio 
of wave height to length is 0.1418 (Havelock 1918), which corresponds to 
ka = 0.4461. Inserting this value into (5.3), we get 

W = 1 + 0.1990 + 0.2772 + 0.4472 + . . . . 
The contribution from each term of the series beyond the second is larger than 
the preceding one, indicating that equation (5.3) is not particularly illuminating 
for large-amplitude Stokes waves. 

(5.4) 



ESfects of plane progressive irrotational waves on thermal boundary layers 329 

6. The gravity wave of limiting amplitude 
Michell (1 893) computed the structure of the deep-water irrotational gravity 

wave of maximum amplitude. Havelock (1918) extended his result to large- 
amplitude waves, including the breaking wave, in a slightly different formulation. 
Here we follow Havelock’s treatment. 

The wave structure is governed by: 

dzldw = 2-k1( -isinakw/c)-)e-ikw16c[l +cleikw/c+~2e2ikw/e+ ...I (6.1) 
or by 

dw/dz = 2*c( +isin @w/c)+*e+ikw16c[l +bleikw/c+b2e2ikw/c+ ...I. (6.2) 

Havelock computes the coefficients b, up to  b, for the wave of maximum ampli- 
tude. By substituting (6.1) into (5.2), relating the c,’s to the bn’s and carrying 
out the integrations (see appendix C) 

W = 1.461 - 0.065 - 0.011 - 0.003 - 0.001 = 1.381 0.002. (6-3) 

Basically, (see appendix C for the precise details) the first term of (6.3) comes 
from the first term of (6.1)-(6.2), the first two terms of (6.3) come from the first 
two terms of equations (6.1)-(6.2) etc. Thus, most of the contribution to ( W - 1) in 
the presence of the wave of limiting amplitude lies in the lowest order; the 
numerical values of each successive order decrease fast enough that W must lie 
quite close to 1.381. 

O’Brien (1967) has obtained a value W = 2.00 for a negligibly thin thermal 
boundary layer on the Gerstner wave of limiting amplitude. The overall reason 
that the irrotational gravity wave is so much less effective than the Gerstner wave 
in modifying thermal boundary layers is that it breaks a t  a much smaller ampli- 
tude, ka = 0.4461, rather than ka = 1*0000. Consequently, the total surface 
length per wavelength slh, and the shrinking of the mean thermal boundary- 
layer thickness are substantially less for the limiting irrotational gravity wave 
(s  = 1.037A; see appendix C) than for the limiting Gerstner wave ( s  = 24h). 

7. Concluding remarks 
7.1. Comparison ofthe results for various wave types 

Table 1 summarizes the results of these calculations and an expansion of equation 
(3.16) of O’Brien (1967). The expressions agree to  O(ka)2. There is no reason to 
expect agreement beyond this order, and there is none. The coefficients of the 
( k ~ ) ~  term happen to  be small for the Gerstner wave and the capillary wave, and 
large for the gravity wave. This is undoubtedly related to the exact geometry of 
the waves. The significant differences in maximum wave effectiveness for the 
three types of waves are related most directly to the different maximum values of 
(ka)  which these waves can attain. 

7.2. Relevance of the results 
The parameter W is a reasonable estimate of the factor by which the tempera- 
ture difference AT across a thermal boundary layer decreases, when the average 
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heat flux out of water is relatively independent of the presence of the waves.t 
The computed values of W show that capillary waves can decrease AT by a 
factor which is nearly W ,  which theoretically can be as large as 9.0 for 
infinitesimal layers, and about 7-8.5 for 1-2 mm layers. Irrotational non- 
breaking gravity waves are not nearly as effective, because W cannot exceed 
1.38. 

In  reality, because of viscous damping and instabilities arising from resonant 
interaction among wave trains (McGoldrick 1965) one does not expect to see long 
trains of capillary waves at near-breaking amplitudes. Nevertheless, if even 
small patches of ocean surface contain large-amplitude transient capillary waves, 
the modifications to the thermal boundary layers by the capillary waves may 
exceed those of the gravity waves; in no event should the capillary waves be 
ignored. 

Wave type 
Maximum Maximum 

Wave effectiveness W k a  W 

Capillary l + ( k ~ ) ~ + B ( k a ) ~ + O ( k a ) ~  2.29 9.0 
Gravity Stokes 1 + ( k a ) 2 + 7 ( k a ) 4 + O ( k a ) 6  - - 

Gerstner 1 + (kaY 1.00 2.00 

(irrotational) Limiting - 0.45 1.38 

(rotational grav.) 

TABLE 1. Summary of results. The wave amplitude is a ;  the wave-number is k .  The Stokes 
expansion of gravity waves fails to converge at values of k a  much less than that appropriate 
for the wave of limiting amplitude. 

The theoretical results presented here may constitute an explanation of the 
results of laboratory experiments recently conducted by Hill (1970). He 
measured AT with Q held constant in a short-fetch wind-wave tank. He found 
an almost discontinuous drop in AT by a factor of approximately 3 with in- 
creasing wind speed or fetch. In  all cases the drop occurred when waves, mostly 
capillary, became visible. No measurements of wave properties were made. 

The marked drop of AT may simply have been a manifestation of the large 
decrease in temperature gradients demanded by the heat conduction equation 
when large-amplitude capillary waves are present. Results of this theory, as 
summarized in figures 1-2, show that there is a fairly-wide range of wavelengths 

t If  radiation and evaporation dominate surface cooling, it is reasonable to assumc that 
the average heat flux with waves usually exceeds that without waves by the factor slh, the 
surface lcngth per wavelength. This factor is 1 + $ ( l ~ a ) ~  for linear waves (W = 1 + ( k a ) 2 ) ,  
and, as shown in appendix C, is 1.037 for the gravity wave of limiting amplitude (W 
= 1.38).  For capillary waves of large amplitude there is a ‘blocking effect’ possibly 
involving some trappcd water-vapour and certainly some absorption of radiation emitted 
by one part of the wave a t  another part. Thus s/h will overestimate the changes in heat 
flux. Let s‘ denote the length of free surface over one wavelength over which an outward 
normal does not intercept another part of the wave. Then the factor by which waves 
change Q is approximately s‘/h. For the capillary wave of limiting ainplitudo, s’lh = 1.04. 
In  all of these cases, (QWav/Qat,,,- 1) < t ( W -  1). 
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and amplitudes over which W exceeds 3. Measurements of the wave properties 
would be necessary in order to make a closer comparison between theory and 
experiment; they are now being planned. 

I wish to thank Dr Steve A. Piacsek of Argonne National Laboratory and Prof. 
George W. Platzman of the University of Chicago for useful discussions related 
to this problem, and an anonymous referee who brought the papers by Boussinesq 
and Grosh & Cess to my attention. 

Appendix A. Evaluation of the wave effectiveness for capillary waves 
The details of the computations involved in evaluating W for capillary waves 

are laid out here. The starting point is the Jacobian following (4.1) 

(A 1 )  
(1 - A  e i h l c )  ( 1  - A  e-ikw*/c 

(1 + A eikwlc) (1  + A e-ikw'lc 

where w* is the complex conjugate of w.  

can be rewritten in terms of dimensionless variables 
Let fl  denote k$/c and p denote k$/c, po denoting k$o/c. With A$ = hc, (2.28) 

where B = 2Ae-p/(l +AZe--2p). 

First we consider the integral I ,  

Noting that the integrand of (A 6) can be written 

1-BcosE 4 4 [ 1 + B cos 61 = - 1 + B cos f ;+  (1 + B cos t ) 2 '  

then (A6) can be represented as the sum of three integrals, each of which is 
identical in form to Q 3.645 of Gradshteyn & Ryzhik (1965). Finally 

I = 2m[1- 4( 1 - B2)-t + 4( 1 - B2)-#]. (A 8) 

Now 

If a parameter a is defined by A2 = e-2ar, then 

( 1  - B2)-t = Goth (,u + a) 
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and, using (A 10) and (A 8), (A 4) becomes 

The indefinite integrals corresponding to ( A l l )  are in Gradshteyn & Ryzhik 
(1965, $2.42) and 

(A 12) 

(A 13) 

2 

PO 
W = 1 + - (cotha a - Goth' (P + a)} 

which is equivalent to (4.3). 

Appendix B. Evaluation of the wave effectiveness for Stokes waves 
The details of the computations involved in evaluating W for Stokes waves 

are laid out here. The starting point is (5.2), which in the notation of appendix A is 

where 
m m (-) ax 2 = $ [l- C nA,~os(nE)]~; ($), = 

a+ n=l 

Because 

it follows from direct substitution of (€3 3) via (B 2) into (B 1) that 
m 

W = 1 + 2 n2At. (B5) 
n=l  

Stokes (1880) computed the first few A,. Defining b = A,, 

A, b; A ,  = -(b2+@4); A ,  = - ( @ 3 + g b 5 ) ;  A 4 -  - - B b 4 * A  3 9 5 -  - 1 2 5 0 5 .  2 4  (B6) 

If a is defined in a way consistent with that defined for capillary waves, i.e. 
one-half the vertical distance between crest and trough, the crest here being at  
k$/c = 0 and the trough at  k$lc = 7 ~ ,  

a = :[!A6 = 0) - Y(E  = 701, 
La = A,+A,+A,+ ... = b-@3+?b5+O(b7). 

(B 7) 

(B 8 )  

Using only those A ,  up to A,, (ka)2  can be determined only to an accuracy of be. 
To this accuracy, (B 5) with (B 6) yields 

W = 1+b2+4b4+7b6.  (B 9) 

(5.3) 

With the help of (B 8) this result can be rewritten as a series in powers of k2a2: 

W = 1 + L2aZ + 7k4a4+ (227/4) k 6 d .  
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Appendix C. Evaluation of the wave effectiveness and surface length of 
the gravity wave of maximum amplitude 

The details of the computations involved in evaluating W and s/h for the 
gravity wave of maximum amplitude are laid out here. The starting point is 
Havelock's expansion (6.1). Using the notation of appendix A, along @ = 0 

By substituting this expression into (5.2) 

All products cos (2p.5') cos (2qC') and sin ( 2 p Y )  sin (2&'), which occur within the 
series in the integrand of (C 3) ,  involve factors cos ( 2 4 ' ) .  Collecting the coeffi- 
cients of like terms, and retaining only terms to order 4, the expression within the 
square parentheses of (C 3) is 

[ ] = ( 1  + C! + c;) + ( 2c1 + ~c,c , )  cos (26') + ( 2c2 + ~c,c,)  cos ($3 
+ 2c, cos (6.3 + 2c4 cos ( 86'). (C 4 )  

The wave effectiveness is thus of the form 

w = c,I,+clIl+ ... +C414+ ..., 
where C, = 1 + c; + ci; Cl = 2c1 + 2c1c2, etc. and 

where I? is the gamma function; proceeding from (C 6 )  to (C 7 )  requires the 8th 
integral of 3.631 of Gradshteyn & Ryzhik (1965). 

Using the fact that r(z + 1 )  = x r(x) it is easy to show that 

3m-2 
I, = - 3 m  - 1 L-1. 

Because I, = 1.459, it follows that Il = 0.729, I, = 0.5825, etc. 
Havelock gave the following values for the coefficients bn in (6.2): 

b, = 0.0414; b, = 0.0114; b, = 0.0042; b4 = 0.0014. 

It thus follows that 

~1 = -b1 = -0.0414, 

c2 = b;- b, = - 0.0097, 

~3 = 2b1 b, - b, - b: = - 0.0032, 

~4 = 2b,b3-3b;b,-b4+b;+b;t = -0.0010. 
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The value of W can be evaluated from ((3.5). The numbers within the first 
parentheses of each term of the following equation form C,, the numbers following 
the order in (C 4) : 

w = (1.0000 + 0.0017 + 0.0001) (1.459) 

+ ( - 0.0828 + 0.0008) (0.729) + ( - 0.0194+ 0.0003) (0.5825) 

+ ( -  0.0064) (0.510) + ( -  0.0020) (0.463). 

W = 1.461 - 0.065 - 0.01 1 - 0.003 - 0.001 = 1.381. 
(C 9) 

(6.3) 

The surface length per unit wavelength for the gravity wave of maximum 
amplitude is 

By substituting the square root of (C 1) into (C 11): 

where d, can be obtained from c, and, therefore, from b,. The integrals in (C 13) 
are practically of the same form as (C6) and are included in Gradshteyn & 
Ryzhik's 8th integral of 3-631. After much algebra, 

s /A  = (1.001) [la063 - 0.022 - 0.004- 0.001 - 0.0001 = 1.037. (C 14) 
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